Курс - Самоучитель - Микроконтроллеры для начинающих

 
         
 

- стр. 7 -

 

Чем и как "прошить" МК AVR.

Как запрограммировать AVR.

Как загрузить прошивку в AVR.

 

Советую прошивать микроконтроллер из компилятора CodeVisionAVR через простейший адаптер - "пять проводков" от принтерного порта ПК к программируемому AVR.

 

 

Напоминаю:


поиск   GOOGLE   по 
Краткому Курсу AVR

 

об основах и тонкостях электроники и схемотехники
читайте в настольной книге электронщика:  

П.Хоровиц, У.Хилл. Искусство схемотехники - общепризнанная 
библия электронщика на РУССКОМ языке.    Уже 5-е издание.

 

 

 


ПОДРОБНО:

Результат написания и компиляции программы - файл-прошивку
с расширением .hex (и возможно файл с содержимым для EEPROM МК) нужно "зашить" в МК

МК AVR многократно программируются прямо в устройстве в котором будут работать - такое программирование называют - "ин систем программинн" или ISP. 


Вам нужно на плате вашего устройства установить 
6-ти штырьковый разъем для ISP

вид сверху платы на штырьки. 
выводы подсоединить к МК в соответствии с указанными названиями.

Подробней по ISP посмотрите Апликейшн Ноут AVR910


Вывод 2 нужно подключить к + питания МК если
вы собираетесь использовать программатор питающийся от вашего же устройства - например фирменный ISP AVR. Для "5 проводов" этот вывод не подключается.



Для программирования достаточно 5 контактов

Соответственно и разъем который вы будете использовать может быть любым удобным для размещения на плате и имеющий минимум 5 контактов.

 

Все контакты ISP разъема подсоединяются
к  ножкам  МК в соответствии с названиями !

 

     
 

ВНИМАНИЕ !

в ATmega64 и ATmega128 выводы MOSI
и MISO не применяют для ISP

Внимательно смотрите ДатаШит !    

Используются другие выводы МК  !

Например для ATmega128 сигналы

MISO подключают к ножке PE1

MOSI подключают к ножке PE0

 
     


Я советую вам пользоваться  опцией программирования встроенной 
в компилятор CodeVisionAVR и конечно же в нем разрабатывать 
программу для МК. 

Дело в том, что вам вряд ли удастся сразу написать программу без ошибок, даже после прогона в софт эмуляторе - симуляторе ваше устройство может делать не то,  что вы от него ожидаете - значит в программу нужно будет вносить изменения и снова зашивать в МК, и так раз 100 и более.  

Вы можете в компиляторе CodeVisionAVR открыть меню "Проджект -> Конфига -> Афта Мэйк"  и отметить чек бокс "Program the chip" затем ОК.

Еще нужно в меню "Сеттинс  -> Программер" выбрать ваш адаптер (подробней ниже!) для программирования.

Теперь после безошибочной компиляции программы вам будет доступна кнопка "Program" - нажмите на нее и произойдет программирование МК - т.е. файл .hex будет загружен в память программ МК. Затем МК будет "сброшен" (на ножку RESET будет подан лог. 0 а затем опять "1") и начнет выполнять только что прошитую (загруженную в него) программу.

Вам даже не нужно будет отсоединять адаптер программирования от вашего устройства !  если вы не используете интерфейс SPI. 

... и так до окончательной отладки устройства.

 

     
 

В А Ж Н О !  

В диалоге настройки программирования не трогайте галочки установки фьюзов МК если не разобрались четко что они делают! 

Иначе вы можете отключить режим ISP или внутренний RC-генератор и для следующего программирования вам понадобится ставить кварц с конденсаторами или даже искать параллельный программатор.

 
     

 

в ATmegaXXX с завода включен внутренний RC генератор на частоте 1 МГц (уточните это по ДШ) - если вам нужна другая частота или нужно включить внешний кварцевый или керамический резонатор - вам нужно будет запрограммировать некоторые фьюзы по таблицам из ДШ или по таблице фьюзов на стр. 2

Напомню : 

НЕ запрограммированный  фьюз        1

ЗАпрограммированный   фьюз             0

 

 

Пример: Чтобы включить в ATmega16 внешний кварцевый резонатор с частотой от 3 до 8 МГц с конденсаторами (по схеме рис. 12 ДШ) найдите в ДШ раздел "System Clock". В таблице 2 указаны комбинации фьюзов для разных источников тактового сигнала. Далее написано что с завода МК поставляется с такой комбинацией фьюзов

SCEL   0001     SUT  10       CKOPT   1

По таблице 4  находим для кварца с частотой от 3 до 8 МГц  нужны конденсаторы от 12 до 22 пФ и такая комбинация фьюзов

SCEL   1111     SUT  10       CKOPT   1

 

Вот эти установки в программаторе компилятора  CVAVR

 


Для прошивания МК нажмите кнопку "Program All"

 


 

 

     
 

Помни товарищ !  Есть живая конференция где быстро и правильно подскажут как делать.


О фьюзах есть на стр. 2 курса. 
Подробней вы можете
прочитать в ДШ, и по-русски в переводе ДШ

 
     

 


 

Для соединения компьютера с ISP разъемом устройства на AVR Советую сделать адаптер от STK200  - это "правильные 5 проводков"

В установках компилятора CodeVisionAVR интерфейс "5-проводков"
называется  "Канда системз STK200+/300"


Программа узнаёт адаптер STK200 по перемычкам на разъеме параллельного порта к которому он подключается - должны быть соединены двумя перемычками пары выводы: 2 и 12,  3  и 11


     
 

Внимание!   Для программирования к МК должно быть подключено питание. Например +4...+5 вольт ко всем выводам МК в названии которых есть VCC  и 0 вольт ко всем выводам GND (это "общий" провод).

 
     


 
Если в МК не
т внутреннего генератора тактового сигнала (например старые AVR серии AT90sXXXX ) то нужно подключить кварц на 1 - 8 МГц и два конденсатора от 15 до 33 пФ. Либо подать тактовый сигнал 1-1.5 МГц от внешнего источника - например генератора на микросхеме 74hc14 или на таймере LM555.

 



Программа AVReAl может программировать
МК
без кварца и без конденсаторов !

Она выводит тактовый сигнал на выв. 5 LPT его нужно подать на ножку XTAL1 МК и добавить в командной строке AVReAL специальный ключ  "-o0".

Тактовый сигнал генерирует и программатор на USB
по ссылке в низу этой страницы !

 

Еще нужны (может не понадобится на некоторых AVR - но  не помешает точно) резистор 10 кОм от ножки Reset МК на VCC и конденсатор 0.1 мкФ от Reset на GND  -  как в схеме к задаче 7 курса.

 


     
 

Я использую самый простой вариант адаптера
STK200 - "для самых ленивых"   

пять поводков соединяющих линии параллельного (LPT) порта ПК и AVR так же как на схеме STK200 выше, но без микросхемы буфера. 

Лучше все же токоограничительные резисторы от 150 до 270 ом впаять

Береженого бог бережет !

 
     

 

 



Адаптер "5-проводков" прекрасно
работает с компилятором CodeVision



2005_01 проверил "проводки" при питании МК ATmega64L
от 3,0 до 5,3 вольт - программирует без сбоев!
  


     
 

Советую для изготовления адаптера взять " принтерный" шнур - он длинный и экранированный, а не экранированные проводки не стоит делать более 10-15 см.

 
     

 
Для питания устройства при программировании и отладке можно кроме сетевого адаптера использовать: 

- батарейку на 6 вольт с 2 диодами последовательно для понижения напряжения... 

- можно три батарейки по 1,5 вольт последовательно соединить 


... а можно +5 вольт взять с вывода 1 гейм
порта компьютера или осторожно из гнезда USB.


Желательно питать устройство от ПК!  В этом случае "земля" вашего устройства будет соединена с корпусом ПК и можно будет безопасно подключать и отключать разъем программирующего адаптера.


 

     
 

ВНИМАНИЕ! 

Всегда старайтесь первыми соединить "земли" устройств, а затем питание и потом уже
сигнальные линии.

 
     

 

 


Не поленитесь:  спаяйте адаптер STK200 на микросхеме буфере - так как LPT порт компьютера более нежен чем COM - соответственно его спалить проще...   

спалите LPT и будете меня ругать! 

А  я  предупреждал !

 

 

В документации на  Tiny2313 есть неточность.

По умолчанию, т.е. новый МК с завода, внутренний RC-генератор
настроен на 4МГц с пред-делителем на 8  - т.е. частота 500 КГц. 

Значит частота на SCK, формируемая программатором
не должна быть выше 120..125кГц. 



Программатор встроенный в CodeVisionAVR
позволяет настроить эту частоту правильно.

 

AVReal  тоже.  


 

     
  Если вы хотите использовать ножки МК SCK, MOSI, MISO в вашем устройстве то подключайте другие компоненты к ним через резисторы 4.7 КОм - чтобы
не мешать программированию.

Так рекомендовано в апноуте AVR042

Для Мега64, -128, -256 вместо MOSI и MISO используются другие ножки для ISP программирования !
 
     

 

 

 

Если у вас нет LPT порта сделайте
Аналог  "5 проводков" для COM-порта.

 

 


Или соберите простой, дешевый
USB программатор для AVR


 

 

Или соберите похожий
USB
 программатор AVR и AT89s
 

Вот топик об успешной сборке этого интерфейса для программирования
на ATmega8. Это новый вариант платы для него. Архив с разводкой платы

Внимание !  Этот программатор выдает тактовый сигнал 1 МГц для прошивки МК без кварца и с выключенным внутренним генератором. тактовый сигнал выводится на контакт "LED".
Его нужно подвести к ножке XTAL1.

 

 

 

 

Назад              Дальше...

 

 


AVR раз, два, три...   это просто!

действительно Краткий Курс !

МикроКонтроллеры AVR Начинающим "с нуля" 


 
 

В низу есть список Апноутов для AVR

 

 

 

 

 

 

 

 

 

 

 

 

 

ключевые слова: программирование микроконтроллеров, как написать программу для микроконтроллера, обучение программированию микроконтроллеров, микроконтроллеры atmega128, как запрограммировать микроконтроллер, как прошить микроконтроллер, отладка программы для AVR, моделирование работы электронных схем, электронные проекты, хобби, язык си для микроконтроллеров, язык программирования си
AT76C712 , AT76C713 , AT90CAN128 , AT90CAN128 Automotive , AT90CAN32 , AT90CAN64 , AT90PWM2 , AT90PWM3 , AT90S1200 , AT90S2313 , AT90S2323 , AT90S2343 , AT90S4433 , AT90S8515 , AT90S8535 , ATmega128 , ATmega1280 , ATmega1281 , ATmega16 , ATmega161 , ATmega162 , ATmega163 , ATmega164 , ATmega165 , ATmega168 , ATmega168 Automotive , ATmega169 , ATmega2560 , ATmega2561 , ATmega32 , ATmega323 , ATmega324 , ATmega325 , ATmega3250 , ATmega329 , ATmega3290 , ATmega406 , ATmega48 , ATmega48 Automotive , ATmega64 , ATmega640 , ATmega644 , ATmega645 , ATmega6450 , ATmega649 , ATmega6490 , ATmega8 , ATmega8515 , ATmega8535 , ATmega88 , ATmega88 Automotive , ATtiny11 , ATtiny12 , ATtiny13 , ATtiny15L , ATtiny2313 , ATtiny25 , ATtiny26 , ATtiny28L , ATtiny45 , ATtiny85

 

 

АпНоуты - примеры применения микроконтроллеров МК - Схемы, исходники, компоненты.


СКАЧАЙТЕ !   и   ИСПОЛЬЗУЙТЕ !

 

AVR 8-Bit RISC - Application Notes

 

 General Purpose     Migration Notes
 
General Purpose
PDF Software Description

 
AVR000: Register and Bit-Name Definitions for the AVR Microcontroller (1 pages, revision B, updated 4/98)
This Application Note contains files which allow the user to use Register and Bit names from the databook when writing assembly programs.

 
AVR001: Conditional Assembly and portability macros (6 pages, revision D, updated 03/05)
This application note describes the Conditional Assembly feature present in the AVR Assembler version 1.74 and later. Examples of how to use Conditional Assembly are included to illustrate the syntax and concept.

 
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR (10 pages, revision D, updated 10/04)
The purpose of this application note is to guide new users through the initial settings of IAR Embedded Workbench, and compile a simple C-program.
 
 
AVR031: Getting Started with ImageCraft C for AVR (8 pages, revision B, updated 5/02)
The purpose of this Application Note is to guide new users through the initial settings of the ImageCraft IDE and compile a simple C program.

 
AVR032: Linker Command Files for the IAR ICCA90 Compiler (11 pages, revision B, updated 5/02)
This Application Note describes how to make a linker command file for use with the IAR ICCA90 C-compiler for the AVR Microcontroller.
 
 
AVR033: Getting Started with the CodeVisionAVR C Compiler (16 pages, revision B, updated 5/02)
The purpose of this Application Note is to guide the user through the preparation of an example C program using the CodeVisionAVR C compiler. The example is a simple program for the Atmel AT90S8515 microcontroller on the STK500 starter kit.
 
 
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR (8 pages, revision B, updated 4/03)
This Application Note describes how to use C to control the program flow and main program and assembly modules to control time critical I/O functions.
 
 
AVR035: Efficient C Coding for AVR (22 pages, revision D, updated 01/04)
This Application Note describes how to utilize the advantages of the AVR architecture and the development tools to achieve more efficient c Code than for any other microcontroller.
 
 
AVR040: EMC Design Considerations (18 pages, revision D, updated 06/06)
This Application Note covers the most common EMC problems designers encounter when using Microcontrollers.
 
 
AVR042: AVR Hardware Design Considerations (14 pages, revision E, updated 06/06)
This Application Note covers the most common problems encountered when switching to a new microcontroller architecture like the AVR. Solutions and considerations for the most common design challenges are covered.

 
AVR053: Calibration of the internal RC oscillator (15 pages, revision G, updated 05/06)
This application note describes a method to calibrate the internal RC oscillator and targets all AVR devices with tunable RC oscillator. Furthermore, an easily adaptable calibration firmware source code is also offered. This allows device calibration using AVR tools, and it can also be used for 3rd party calibration systems, based on production programmers.

 
AVR054: Run-time calibration of the internal RC oscillator (17 pages, revision B, updated 02/06)
This application note describes how to calibrate the internal RC oscillator via the UART.

 
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC (16 pages, revision C, updated 02/06)
This application note describes a fast and accurate way to calibrate the internal RC oscillator using an external 32.768 kHz crystal as input to an asynchronous Timer/Counter.
 
 
AVR060: JTAG ICE Communication Protocol (20 pages, revision B, updated 01/04)
This application note describes the communication protocol used between AVR Studio® and JTAG ICE.

 
AVR061: STK500 Communication Protocol (31 pages, revision B, updated 4/03)
This document describes the protocol for the STK500 starterkit. This protocol is based on earlier protocols made for other AVR tools and is fully compatible with them in that there should not be any overlapping or redefined commands.

 
AVR063: LCD Driver for the STK®504 (13 pages, revision A, updated 04/06)
The STK504 is a hardware expansion board for STK500 that add support for 100 pin AVR LCD devices. This application note is an example of how to use the ATmega3290 and the STK504.

 
AVR064: STK502 - A Temperature Monitoring System with LCD Output (24 pages, revision C, updated 02/06)

 
AVR065: LCD Driver for the STK502 and AVR Butterfly (18 pages, revision C, updated 02/06)
In applications where user interaction is required it is often useful to be able to display information to the user. The ATmega169 is a MCU with integrated LCD driver. It can control up to 100 LCD segments. The ATmega169 is therefore, an obvious choice when designing applications that requires both an efficient MCU and an LCD.

 
AVR067: JTAGICE mkII Communication Protocol (82 pages, revision C, updated 04/06)
This document describes the communication protocol used between AVR Studio and JTAGICE mkII.

 
AVR068: STK500 Communication Protocol (37 pages, revision C, updated 06/06)
The document describes version 2.0 of the Atmel STK500 and the PC controlling the STK500 communication protocol. The firmware is distributed with AVR Studio 4.11 build 401 or later.
 
 
AVR069: AVRISP mkII Communication Protocol (24 pages, revision B, updated 02/06)
This document describes the AVRISP mkII protocol. The firmware is distributed with AVR Studio 4.12 or later.
 
 
AVR070: Modifying AT90ICEPRO and ATICE10 to Support Emulation of AT90S8535 (5 pages, revision C, updated 5/02)
Older AT90ICEPRO can be upgraded to support the new AVR devices with internal A/D converter. This Application Note describes in detail how to modify the AT90ICEPRO to support emulation of AT90S8535 and other AVR devices with A/D converter.
 
 
AVR072: Accessing 16-bit I/O Registers (4 pages, revision B, updated 5/02)
This Application Note shows how to read and write the 16-bit registers in the AVR Microcontrollers. Since the AVR has an 8-bit I/O bus these registers must be written in two execution cycles. It explains how to safely read and write these 16-bit registers.
 
 
AVR074: Upgrading AT90ICEPRO to ICE10 (8 pages, revision B, updated 5/02)
This Application Note describes how to upgrade the AT90ICEPRO emulator to ATICE10 Version 2.0

 
AVR100: Accessing the EEPROM (7 pages, revision C, updated 09/05)
This Application Note contains assembly routines for accessing the EEPROM for all AVR devices. Includes code for reading and writing EEPROM addresses sequentially and at random addresses.

 
AVR101: High Endurance EEPROM Storage (5 pages, revision A, updated 9/02)
Having a system that regularly writes a parameter to the EEPROM can wear out the EEPROM, since it is only guaranteed to endure 100.000 erase/write cycles. This Application Note describes how to make safe high endurance parameter storage in EEPROM.

 
AVR102: Block Copy Routines (5 pages, revision B, updated 5/02)
This Application Note contains routines for transfer of data blocks.

 
AVR103: Using the EEPROM Programming Modes (5 pages, revision A, updated 03/05)
This application note implements a driver utilizing the programming modes available for the EEPROM in some new AVR parts, involving both time and power savings.

 
AVR104: Buffered Interrupt Controlled EEPROM Writes (9 pages, revision A, updated 07/03)
Many applications use the built-in EEPROM of the AVR to preserve and hence restore system information when power is removed from the system. This application note presents a buffered interrupt driven approach, which significantly increases general performance and decreases power consumption compared to a polling implementation.

 
AVR105: Power efficient high endurance parameter storage in Flash memory (10 pages, revision A, updated 9/03)
This application note describes how to implement a high endurance parameter storage method in Flash memory using the self-programming feature of the AVR.

 
AVR106: C functions for reading and writing to Flash memory (10 pages, revision B, updated 08/06)
Recent AVRs have a feature called Self programming Program memory. This feature makes it possible for an AVR to reprogram the Flash memory during program run and is suitable for applications that need to self-update firmware or store parameters in Flash. This application note provides C functions for accessing the Flash memory.

 
AVR107: Interfacing AVR serial memories (22 pages, revision A, updated 03/05)
This application note describes the functionality and the architecture of SPI serial memories drivers as well as the motivation of the selected solution.

 
AVR108: Setup and use of the LPM Instructions (4 pages, revision B, updated 5/02)
This Application Note describes how to access constants saved in Flash program memory of the AVR microcontrollers

 
AVR109: Self Programming (11 pages, revision B, updated 06/04)
This Application note describes how an AVR with the SPM instruction can be configured for Self Programming.
 
 
AVR120: Characterization and Calibration of the ADC on an AVR (15 pages, revision D, updated 02/06)
This application note explains various ADC (Analog to Digital Converter) characterization parameters and how they effect ADC measurements. It also describes how to measure these parameters during application testing in production and how to perform run-time compensation.

 
AVR121: Enhancing ADC resolution by oversampling (14 pages, revision A, updated 09/05)
This Application Note explains the method called "Oversampling and Decimation" and which conditions need to be fulfilled to make this method work properly to get achieve higher resolution without using an external ADC.

 
AVR128: Setup and use the Analog Comparator (4 pages, revision B, updated 5/02)
This Application Note serves as an example on how to set up and use the AVR's on-chip Analog Comparator.

 
AVR130: Setup and use the AVR Timers (16 pages, revision A, updated 2/02)
This Application Note describes how to use the different timers of the AVR. The AT90S8535 is used as an example. The intention of this document is to give a general overview of the timers, show their possibilities and explain how to configure them. The code examples will make this clearer and can be used as guidance for other applications.

 
AVR131: Using the AVR’s High-speed PWM (8 pages, revision A, updated 09/03)
This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available in some AVR microcontrollers. The assembly code example provided shows how to use the fast PWM in the ATtiny26. The ATtiny15 also features a high-speed PWM timer.

 
AVR132: Using the Enhanced Watchdog Timer (15 pages, revision B, updated 01/04)
This Application Note describes how to utilize the Enhanced Watchdog Timer (WDT) used on new AVR devices. In addition to performing System Reset, the WDT now also has the ability to generate an interrupt.
 
 
AVR133: Long Delay Generation Using the AVR Microcontroller (8 pages, revision B, updated 01/04)
The solution presented here shows how the AVR AT90 series microcontrollers generate and handle long delays. On-chip timers are used without any software intervention, thus allowing the core to be in a low-power mode during the delay. Since the timers are clocked by the system clock, there is no need for additional components.

 
AVR134: Real-Time Clock using the Asynchronous Timer (9 pages, revision F, updated 08/06)
This Application Note describes how to implement a real-time (RTC) on AVR microcontrollers that features the RTC module.

 
AVR135: Using Timer Capture to Measure PWM Duty Cycle (12 pages, revision A, updated 10/05)
This application note describes how the pulse width and period may be computed using the Input Capture Unit (ICP).

 
AVR136: Low-jitter Multi-channel Software PWM (5 pages, revision A, updated 05/06)
This application note shows how an multi-channel software pulse-width modulation can be implemented. The implementation uses an 8-bit timer with overflow interrupt to generate 10 PWM channels with very low jitter.
 
 
AVR140: ATmega48/88/168 family run-time calibration of the Internal RC oscillator (12 pages, revision A, updated 09/06)
This application note describes how to calibrate the internal RC oscillator via the UART. The method used is based on the calibration method used in the Local Inteconnect Network (LIN) protocol, synchronizing a slave node to a master node at the beginning of every message frame.

 
AVR151: Setup and use of the SPI (14 pages, revision B, updated 09/05)
This application note describes how to setup and use the on-chip Serial Peripheral Interface (SPI) of the AVR microcontrollers.

 
AVR155: Accessing I2C LCD Display Using the AVR 2-Wire Serial Interface (10 pages, revision B, updated 09/05)
This application note includes a 2-wire/TWI driver for bus handling and describes how to access a Philips I2C LCD driver on a Batron LCD display.
 
 
AVR180: External Brown-Out Protection (16 pages, revision B, updated 5/02)
This Application Note shows in detail how to prevent system malfunction during periods of insufficient power supply voltage.

 
AVR182: Zero Cross Detector (8 pages, revision B, updated 01/04)
This Application Note describes how to implement an efficient zero cross detector for mains power lines using an AVR microcontroller.

 
AVR200: Multiply and Divide Routines (21 pages, revision C, updated 05/06)
This Application Note lists subroutines for multiplication and division of 8 and 16-bit signed and unsigned numbers.

 
AVR201: Using the AVR Hardware Multiplier (11 pages, revision C, updated 6/02)
Examples of using the multiplier for 8-bit arithmetic.

 
AVR202: 16-Bit Arithmetics (3 pages, revision B, updated 5/02)
This Application Note lists program examples for arithmetic operation on 16-bit values.

 
AVR204: BCD Arithmetics (14 pages, revision B, updated 01/03)
This Application Note lists routines for BCD arithmetics.

 
AVR220: Bubble Sort (5 pages, revision B, updated 5/02)
This Application Note implements the Bubble Sort algorithm on the AVR controllers.

 
AVR221: Discrete PID controller (10 pages, revision A, updated 05/06)
This application note describes a simple implementation of a discrete Proportional-Integral-Derivative (PID) controller.

 
AVR222: 8-Point Moving Average Filter (5 pages, revision B, updated 5/02)
This Application Note gives an demonstration of how the addressing modes in the AVR architecture can be utlized.

 
AVR223: Digital Filters with AVR (24 pages, revision A, updated 9/02)
This document focuses on the use of the AVR hardware multiplier, the use of the general purpose registers for accumulator functionality, how to scale coefficients when implementing algorithms on fixed point architectures, the actual implementation examples and finally, possible ways to optimize/modify the implementations suggested.

 
AVR230: DES Bootloader (24 pages, revision D, updated 04/05)
This application note describes how firmware can be updated securely on AVR microcontrollers with bootloader capabilities. The method includes using the Data Encryption Standard (DES) to encrypt the firmware. This application note also supports the Triple Data Encryption Standard (3DES).

 
AVR231: AES Bootloader (29 pages, revision D, updated 08/06)
This application note describes how firmware can be updated securely on AVR microcontrollers with bootloader capabilities. The method uses the Advanced Encryption Standard (AES) to encrypt the firmware.

 
AVR236: CRC check of Program Memory (9 pages, revision B, updated 5/02)
The Application Note describes CRC (Cyclic Redundancy Check) theory and implementation of CRC checking of program memory for secure applications.

 
AVR240: 4x4 Keypad-Wake Up on Keypress (14 pages, revision D, updated 06/06)
This Application Note describes a simple interface to a 4 x 4 keypad designed for low power battery operation.

 
AVR241: Direct driving of LCD display using general I/O (11 pages, revision A, updated 04/04)
This application note describes software driving of LCDs with one common line, using the static driving method.

 
AVR242: 8-bit Microcontroller Multiplexing LED Drive & a 4x4 Keypad. (26 pages, revision B, updated 5/02)
This Application Note describes a comprehensive system providing a 4 x 4 keypad as input into a real time clock/timer with two outputs.

 
AVR243: Matrix Keyboard Decoder (11 pages, revision A, updated 01/03)
This application note describes a software driver interfacing an 8x8 keyboard. The application is designed for low power battery operation. The application also supports user-defined alternation keys to implement Caps Lock, Ctrl-, Shift- and Alt-like functionality.

 
AVR244: UART as ANSI Terminal Interface (8 pages, revision A, updated 11/03)
This application note describes some basic routines to interface the AVR to a terminal window using the UART (hardware or software).

 
AVR245: Code Lock with 4x4 Keypad and I2C™ LCD (9 pages, revision A, updated 10/05)
This application note describes how to build a code lock with an AVR and a handful of components. The code lock uses a 4x4 keypad for user input, a piezoelectric buzzer for audible feedback and an LCD for informational output.
 
 
AVR270: USB Mouse Demonstration (19 pages, revision A, updated 02/06)
To obtain the related software code, click on this registration form link.This document describes a simple mouse project. It allows users to quickly test USB hardware using AT90USB without any driver installation.
 
 
AVR271: USB Keyboard Demonstration (20 pages, revision A, updated 01/06)
To obtain the related software code, click on this registration form link.The aim of this document is to describe how to start and implement a USB keyboard application using the STK525 starter kit and FLIP in-system programming software for AT90USB microcontrollers.
 
 
AVR272: USB CDC Demonstration UART to USB Bridge (20 pages, revision A, updated 03/06)
To obtain the related software code, click on this registration form link. The aim of this document is to describe how to start and implement a CDC (Virtual Com Port and UART to USB bridge) application using the STK525 starter kit and FLIP in-system programming software for AT90USB microcontrollers.
 
 
AVR273: USB Mass Storage Implementation (23 pages, revision A, updated 03/06)
To obtain the related software code, click on this registration form link. The aim of this document is to describe how to start and implement a USB application based on the Mass Storage (Bulk only) class to transfer data between a PC and user equipment. For AT90USB microcontrollers.

 
AVR301: C Code for Interfacing AVR® to AT17CXXX FPGA Configuration Memories (20 pages, revision D, updated 01/04)
This Application Note describes how to In-System-Program (ISP) and Atmel FPGA Configuration Memory using an Atmel AVR MCU and how to bit bang TWI using port pins on an AT90S8515 AVR MCU

 
AVR303: SPI-UART Gateway (5 pages, revision A, updated 03/05)
The SPI-UART Gateway application runs on the ATmega8 and allows the developer to test and debug an SPI slave application isolated from the master, using manually controlled communications via a suitable RS232 terminal.

 
AVR304: Half Duplex Interrupt Driven Software UART (11 pages, revision A, updated 8/97)
This Application Note describes how to make a half duplex UART on any AVR device using the 8-bit Timer/Counter0 and an external interrupt.

 
AVR305: Half Duplex Compact Software UART (9 pages, revision C, updated 09/05)
This Application Note describes how to implement a polled software UART capable of handling speeds up to 614,400 bps on an AT90S1200.

 
AVR306: Using the AVR UART in C (3 pages, revision B, updated 7/02)
This Application Note describes how to set up and use the UART present in most AVR devices. C code examples are included for polled and interrupt controlled UART applications

 
AVR307: Half Duplex UART Using the USI Module (18 pages, revision A, updated 10/03)
The Universal Serial Interface (USI) present in AVR devices like the ATtiny26, ATtiny2313, and ATmega169, is a communication module designed for TWI and SPI communication. The USI is however not restricted to these two serial communication standards. It can be used for UART communication as well.

 
AVR308: Software LIN Slave (12 pages, revision B, updated 5/02)
This Application Note shows how to implement a LIN (Local Interconnect Network) slave task in an 8-bit RISC AVR microcontroller without the need for any external components.

 
AVR309: Software Universal Serial Bus (USB) (23 pages, revision B, updated 02/06)
This application note describes the USB implementation in a low-cost microcontroller through emulation of the USB protocol in the firmware. Supports Low Speed USB (1.5 Mbit/s) in accordance with USB2.0.

 
AVR310: Using the USI module as a I2C master (8 pages, revision B, updated 09/04)
This Application Note describes how to use the USI for TWI master communication.

 
AVR311: Using the TWI module as I2C slave (12 pages, revision D, updated 10/04)
This application note describes a TWI slave implementation, in form of a fullfeatured driver and an example of usage for this driver.

 
AVR312: Using the USI module as a I2C slave (9 pages, revision C, updated 09/05)
This Application Note describes how to use the USI for TWI slave communication.

 
AVR313: Interfacing the PCAT Keyboard (13 pages, revision B, updated 5/02)
Most microcontrollers requires some kind of human interface. This Application Note describes one way of doing this using a standard PC AT Keyboard.

 
AVR314: DTMF Generator (8 pages, revision B, updated 5/02)
This Application Note describes how DTMF (Dual-Tone Multiple Frequencies) signaling can be implemented using any AVR microcontroller with PWM and SRAM.

 
AVR315: Using the TWI module as I2C master (11 pages, revision B, updated 09/04)
This Application Note describes a TWI master implementation, in form of a fullfeatured driver and an example of usage for this driver.

 
AVR316: SMBus Slave Using the TWI Module (20 pages, revision A, updated 10/05)
This application note provides background information on the SMBus specification and the AVR TWI module, an interrupt-driven SMBus slave driver and a sample implementation.

 
AVR317: Using the USART on the ATmega48/88/168 as a SPI master (10 pages, revision A, updated 09/04)
Some applications might need more than one SPI module. This can be achieved using the new Master SPI Mode of the ATmega48/88/168 USART.

 
AVR318: Dallas 1-Wire® master (21 pages, revision A, updated 09/04)
This application note shows how a 1-Wire master can be implemented on an AVR, either in software only, or utilizing the U(S)ART module.

 
AVR319: Using the USI module for SPI communication (8 pages, revision A, updated 09/04)
This application note describes a SPI interface implementation, in form of a fullfeatured driver and an example of usage for this driver.

 
AVR320: Software SPI Master (5 pages, revision C, updated 09/05)
The Synchronous Peripheral Interface (SPI) is gaining rapidly in popularity, allowing faster communication than I2C. For the smaller AVR Microcontrollers, which do not have hardware SPI, this Application Note describes a set of low-level routines for software implementation. These can be used as the basis for communicating with Atmel's 25xxx family of Serial EEPROM memories, as well as a host for other peripheral ICs such as display drivers.

 
AVR322: LIN Protocol Implementation on Atmel AVR Microcontrollers (21 pages, revision A, updated 12/05)
The LIN protocol is introduced in this application note, along with its implementation on Atmel Automotive AVR microcontrollers.

 
AVR323: Interfacing GSM modems (21 pages, revision A, updated 02/06)
This application note describes how to use an AVR to control a GSM modem in a cellular phone. The interface between modem and host is a textual protocol called Hayes AT-Commands.

 
AVR325: High-Speed Interface to Host EPP Parallel Port (7 pages, revision A, updated 2/02)
This Application Note describes a method for high-speed bidirectional data transfer between an AVR Microcontroller and an of-the-shelf IBM (R) PC-compatible desktop computer. The interface provides an 8-bit parallel data path, yeilding data transfer rates up to 60 kilobytes/second with an AVR processor operating at 4 MHz. This is an order of magnitude faster than a standard RS-232 connection while not requiring complex external interface hardware (like USB or SCSI).
 
 
AVR328: USB Generic HID Implementation (20 pages, revision A, updated 01/06)
To obtain the related software code, click on this registration form link.The aim of this document is to describe how to start and implement a USB application, based on the HID class, to transfer data between a PC and user equipment, using AT90USB microcontrollers.
 
 
AVR329: USB Firmware Architecture (15 pages, revision A, updated 02/06)
The aim of this document is to describe the USB firmware and give an overview of the architecture, using AT90USB microcontrollers. The main files are described in order to give the user the easiest way to customize the firmware and build his own application.

 
AVR335: Digital Sound Recorder with AVR and DataFlash (20 pages, revision C, updated 04/05)
This Application Note describes how to record, store and play back sound using any AVR MCU with A/D converter, the AT45DB161 DataFlash memory and a few extra components

 
AVR336: ADPCM Decoder (20 pages, revision A, updated 11/04)
This application note focuses on decoding the ADPCM signal, Adaptive Differential Pulse Code Modulation, and turning it to a signal suitable for loudspeakers.

 
AVR350: Xmodem CRC Receive Utility for AVR (7 pages, revision C, updated 09/05)
The Xmodem protocol was created years ago as a simple means of having two computers talk to each other. With its half-duplex mode of operation, 128-byte packets, ACK/NACK responses and CRC data checking, the Xmodem has found its way into many applications.

 
AVR360: Step Motor Controller (4 pages, revision B, updated 4/03)
This Application Note describes how to implement a compact size and high-speed interrupt driven step motor controller.

 
AVR400: Low Cost A/D Converter (6 pages, revision B, updated 5/02)
This Application Note targets cost and space critical applications that need an ADC.

 
AVR401: 8-Bit Precision A/D Converter (12 pages, revision C, updated 2/03)
This Application Note describes how to perform a kind of dual slope A/D conversion with an AVR Microcontroller.

 
AVR410: RC5 IR Remote Control Receiver (10 pages, revision B, updated 5/02)
This Application Note describes a receiver for the frequently used Philips/Sony RC5 coding scheme

 
AVR411: Secure Rolling Code Algorithm for Wireless Link (22 pages, revision A, updated 04/06)
This application note describes a Secure Rolling Code Algorithm transmission protocol for use in a unidirectional wireless communication system.

 
AVR415: RC5 IR Remote Control Transmitter (5 pages, revision A, updated 5/03)
In this application note the widely used RC5 coding scheme from Philips will be described and a fully working remote control solution will be presented. This application will use the ATtiny28 AVR microcontroller for this purpose.
 
 
AVR433: Power Factor Corrector (PFC) with AT90PWM2 Re-triggable High Speed PSC (7 pages, revision A, updated 03/06)
This application note explains how to develop a stand alone PFC (Power Factor Corrector) with the AT90PWM2.

 
AVR434: PSC Cookbook (32 pages, revision A, updated 10/06)
This application note is an introduction to the use of the Power Stage Controllers (PSC) available in some AVR microcontrollers. The object of this document is to give a general overview of the PSC, show their various modes of operation and explain how to configure them. The code examples will make this clearer and can be used as guide for other applications. The examples are developed and tested on AT90PWM3.

 
AVR435: BLDC/BLAC Motor Control Using a Sinus Modulated PWM Algorithm (12 pages, revision A, updated 09/06)
BLDC motors are designed to be supplied with a trapezoidal shape current, respectively BLAC motors are designed to be supplied with a sinusoidal shape current. This application note proposes an implementation using the latter with an ATAVRMC100 board mounted with an AT90PWM3B.

 
AVR440: Sensorless Control of Two-Phase Brushless DC Motor (16 pages, revision A, updated 09/05)
This application note describes how to implement the electronics and microcontroller firmware to control a two-phase BLDC motor using an 8-bit AVR microcontroller. The implementation is based on the small and low cost ATtiny13.

 
AVR441: Intelligent BLDC Fan Controller with Temperature Sensor and Serial Interface (26 pages, revision A, updated 09/05)
This application note describes how to integrate a low-cost, feature-rich AVR microcontroller into the commutator electronics of a BLDC fan. The ATtiny25 is as an example.

 
AVR442: PC Fan Control using ATtiny13 (10 pages, revision A, updated 09/05)
This application note describes the operation of 12 volt DC cooling fans typically used to supply cooling air to electronic equipment, and controlling them with the ATtiny13.

 
AVR443: Sensor-based control of three phase Brushless DC motor (8 pages, revision B, updated 02/06)
This application note described the control of a BLDC motor with Hall effect position sensors. The implementation includes both direction and open loop speed control.

 
AVR444: Sensorless control of 3-phase brushless DC motors (14 pages, revision A, updated 10/05)
This application note describes how to implement sensorless commutation control of a 3-phase brushless DC (BLDC) motor with the low cost ATmega48 microcontroller.

 
AVR446: Linear speed control of stepper motor (15 pages, revision A, updated 06/06)
This application note describes how to implement an exact linear speed controller for stepper motors. It also presents a driver with a demo application, capable of controlling acceleration as well as position and speed.

 
AVR447:Sinusoidal driving of three-phase permanent magnet motor using ATmega48/88/168 (26 pages, revision A, updated 06/06)
This application note describes the implementation of sinusoidal driving for threephase brushless DC motors with hall sensors. The implementation can easily be modified to use other driving waveforms such as sine wave with third harmonic injected.

 
AVR448: Control of High Voltage 3-Phase BLDC Motor (10 pages, revision C, updated 05/06)
Using a microcontroller as a control device, 3-phase motors can be used for a wide range of applications. Motor sizes below one horsepower are efficiently controlled in speed, acceleration, and power levels.

 
AVR450: Battery Charger for SLA, NiCd, NiMH and Li-ion Batteries (43 pages, revision C, updated 09/06)
This Reference Design is a battery charger that fully implements the latest technology in battery charger designs. The charger can fast-charge all popular battery types without any hardware modifications. The charger design contains complete libraries for SLA, NiCd, NiMH and Li-Ion batteries.

 
AVR452: Sensor-based Control of Three Phase Brushless DC Motors Using AT90CAN128/64/32 (10 pages, revision A, updated 03/06)
This application note describes the control of a BLDC motor with Hall effect position sensors. The implementation includes both direction and open loop speed control.

 
AVR453: Smart Battery Reference Design (37 pages, revision C, updated 02/06)
This application note describes the implementation of a smart battery using the Atmel ATmega406 microcontroller. The ATmega406 AVR microcontroller has been created with smart battery applications in mind. The feature set includes high accuracy ADCs, a TWI interface for SMBus communications, as well as independent hardware features that can protect the battery from incorrect use.
 
 
AVR454: Users Guide - ATAVRSB100 - Smart Battery Development kit (20 pages, revision D, updated 06/06)
This document describes the ATAVRSB100 smart battery development kit. The SB100 is designed for evaluation of the Atmel AVR ATmega406, which is designed for smart battery applications. The ATmega406 is designed for 2, 3 or 4 cell Lithium-Ion battery packs.
 
 
AVR460: Embedded Web Server (53 pages, revision C, updated 5/02)
This Reference Design demonstrates how embedded applications can be connected directly to the internet.
 
 
AVR461: Quick Start Guide for the Embedded Internet Toolkit (16 pages, revision B, updated 5/02)
This Quick Start Guide gives an introduction to using the AVR Embedded Internet Toolkit and can be used as a guide for getting started with embedded internet applications.
 
 
AVR462: Reducing the Power Consumption of AT90EIT1 (3 pages, revision A, updated 3/02)
This Application Note describes a small modification to the AVR Embedded Internet Toolkit. This will reduce the power consumption and the operating temperature of the board.

 
AVR465: Energy Meter (40 pages, revision A, updated 07/04)
This application note describes a single-phase power/energy meter with tamper logic. The design measures active power, voltage, and current in a single-phase distribution environment. The meter is able to detect, signal, and continue to measure reliably even when subject to external attempts of tampering.
 
 
AVR480: Anti-Pinch System for Electrical Window (118 pages, revision A, updated 06/06)
This application note provides an example of how to create an anti-pinch system for electrical windows. Based on Speed and Current parameters measured out of the window DC motor, it benefits from the internal digital and analog resources of the AVR ATmegax8 family to support the FMVSS118 and 20/64/ECC standards.

 
AVR492: Brushless DC Motor control using AT90PWM3 (26 pages, revision A, updated 07/05)
This application note describes how to implement a brushless DC motor control in sensor mode using AT90PWM3 AVR microcontroller.

 
AVR493: Sensorless Commutation of Brushless DC Motor (BLDC) using AT90PWM3 and ATAVRMC100 (19 pages, revision A, updated 07/06)
This application note describes how to implement a sensorless commutation of BLDC motors with the ATAVRMC100 developement kit.

 
AVR494: AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm (12 pages, revision A, updated 12/05)
Induction motors can only run at their rated speed when they are connected to the main power supply. This is the reason why variable frequency drives are needed to vary the rotor speed of an induction motor. The aim of this application note is to show how these techniques can be easily implemented on a AT90PWM3, an AVR RISC based microcontroller dedicated to power control applications.

 
AVR495: AC Induction Motor Control Using the Constant V/f Principle and a Space-vector PWM Algorithm (11 pages, revision A, updated 12/05)
In a previous application note [AVR494], the implementation on an AT90PWM3 of an induction motor speed control loop using the constant Volts per Hertz principle and a natural pulse-width modulation (PWM) technique was described. A more sophisticated approach using a space vector PWM instead of the natural PWM technique is known to provide lower energy consumption and improved transient responses. The aim of this application note is to show that this approach, though more computationally intensive, can also be implemented on an AT90PWM3.
 
 
AVR8: Testing Application Note (1 pages, revision A, updated 09/06)

 
AVR910: In-System Programming (10 pages, revision C, updated 11/00)
This Application Note shows how to design the system to support in-system programming.

 
AVR911: AVR Open-source Programmer (13 pages, revision A, updated 07/04)
The AVR Open-source Programmer (AVROSP) is an AVR programmer application that replaces the AVRProg tool included in AVR Studio. It is a command-line tool, using the same syntax as the STK500 and JTAGICE command-line tools in AVR Studio.

 
AVR914: CAN & UART based Bootloader for AT90CAN32, AT90CAN64, & AT90CAN128 (28 pages, revision B, updated 01/06)
This document describes the UART & CAN bootloader functionality as well as the serial protocols to efficiently perform operations on the on chip Flash & EEPROM memories. This bootloader example will help you develop your own bootloader with custom security levels adapted to your own applications.
 
 
Modification for Rev. B to Rev C. STK200 Errata Sheet
 
 
Understanding the AVR ICEPRO I/O Registers (9 pages, revision A, updated 4/98)
This Application Note describes the I/O Register views seen in AVR Studio when using the ICEPRO emulator.

 
Using the STK500 as an AT89C51Rx2 Target Board (7 pages, updated 7/04)
This Application Note explains how to use the STK500 as a development board for 8051 Architecture microcontrollers.
Top
Migration Notes
PDF Software Description
 
 
AVR080: Replacing ATmega103 by ATmega128 (12 pages, revision D, updated 01/04)
This Application Note describes issues to be aware of when migrating from the ATmega103 to the ATmega128 Microcontroller.
 
 
AVR081: Replacing AT90S4433 by ATmega8 (11 pages, revision D, updated 07/03)
This Application Note describes issues to be aware of when migrating from the AT90S4433 to the ATmega8 Microcontroller.
 
 
AVR082: Replacing ATmega161 by ATmega162 (8 pages, revision D, updated 01/04)
This Application Note describes issues to be aware of when migrating from the ATmega161 to the ATmega162 Microcontroller.
 
 
AVR083: Replacing ATmega163 by ATmega16 (8 pages, revision F, updated 09/05)
This Application Note describes issues to be aware of when migrating from the ATmega163 to the ATmega16 Microcontroller.
 
 
AVR084: Replacing ATmega323 by ATmega32 (6 pages, revision C, updated 7/03)
This Application Note describes issues to be aware of when migrating from the ATmega323 to the ATmega32 Microcontroller.
 
 
AVR085: Replacing AT90S8515 by ATmega8515 (10 pages, revision C, updated 01/04)
This Application Note describes issues to be aware of when migrating from the AT90S8515 to the ATmega8515 Microcontroller.
 
 
AVR086: Replacing AT90S8535 by ATmega8535 (10 pages, revision B, updated 7/03)
This Application Note describes issues to be aware of when migrating from the AT90S8535 to the ATmega8535 Microcontroller.
 
 
AVR087: Migrating between ATmega8515 and ATmega162 (5 pages, revision B, updated 07/03)
This application note is a guide to help current ATmega8515 users convert existing designs to ATmega162. The information given will also help users migrating from ATmega162 to ATmega8515.
 
 
AVR088: Migrating between ATmega8535 and ATmega16 (3 pages, revision C, updated 01/04)
This application note is a guide to help current ATmega8535 users convert existing designs to ATmega16. The information given will also help users migrating from ATmega16 to ATmega8535.
 
 
AVR089: Migrating between ATmega16 and ATmega32 (3 pages, revision A, updated 06/03)
This application note is a guide to help current ATmega16 users convert existing designs to ATmega32. The information given will also help users migrating from ATmega32 to ATmega16.
 
 
AVR090: Migrating between ATmega64 and ATmega128 (3 pages, revision B, updated 12/05)
This application note is a guide to help current ATmega64 users convert existing designs to ATmega128. The information given will also help users migrating from ATmega128 to ATmega64.
 
 
AVR091: Replacing AT90S2313 by ATtiny2313 (11 pages, revision A, updated 10/03)
This application note is a guide to help current AT90S2313 users convert existing designs to ATtiny2313.
 
 
AVR092: Replacing ATtiny11/12 by ATtiny13 (7 pages, revision A, updated 10/03)
This application note is a guide to help current ATtiny11/12 users convert existing designs to ATtiny13.
 
 
AVR093: Replacing AT90S1200 by ATtiny2313 (7 pages, revision A, updated 10/03)
This application note is a guide to help current AT90S1200 users convert existing designs to ATtiny2313.
 
 
AVR094: Replacing ATmega8 by ATmega88 (11 pages, revision C, updated 04/05)
This application note is a guide to help current ATmega8 users convert existing designs to ATmega88.
 
 
AVR095: Migrating between ATmega48, ATmega88 and ATmega168 (5 pages, revision A, updated 02/04)
This application note describes issues to be aware of when migrating between the ATmega48, ATmega88 and ATmega168 microcontrollers.
 
 
AVR096: Migrating from ATmega128 to AT90CAN128 (17 pages, updated 03/04)
This application note is a guide to help current ATmega128 users convert existing designs to AT90CAN128.
 
 
AVR097: Migration between ATmega128 and ATmega1281/ATmega2561 (7 pages, revision E, updated 07/06)
ATmega128 and ATmega1281/ATmega2561 are designed to be a pin and functionality compatible sub family. This application note points out the differences to be aware of when porting code between the devices.
 
 
AVR098: Migration between ATmega169, ATmega329 and ATmega649 (5 pages, revision C, updated 04/06)
The ATmega169, ATmega329 and ATmega649 are designed to be a pin and functionality compatible sub family, this application note summarizes the differences between them.
 
 
AVR099: Replacing AT90S4433 by ATmega48 (11 pages, revision A, updated 07/04)
This application note is a guide to assist current AT90S4433 users in converting existing designs to ATmega48. ATmega48 is not designed to be a replacement for AT90S4433, but is pin compatible and has a very similar feature set.
 
 
AVR500: Migration between ATmega64 and ATmega645 (6 pages, revision A, updated 07/04)
This application note is a guide to assist a current ATmega64 user in converting existing designs to ATmega645, and vice versa. ATmega64 and ATmega645 coexisting devices and they are not designed to be a replacement device for each other
 
 
AVR501: Replacing ATtiny15 with ATtiny25 (9 pages, revision A, updated 03/05)
This application note is a guide to assist users of ATtiny15 in converting existing designs to ATtiny25.
 
 
AVR502: Migration between ATmega165 and ATmega325 (4 pages, revision B, updated 12/05)
The ATmega165 and ATmega325 are designed to be a pin and functionality compatible sub family, but there may be a need for some minor modifications in the application when porting code between the devices.
 
 
AVR503: Replacing AT90S/LS2323 or AT90S/LS2343 with ATtiny25 (8 pages, revision B, updated 09/05)
This application note is a guide to assist users of AT90S/LS2323 and, AT90S/LS2343 converting existing designs to ATtiny25.
 
 
AVR505: Migration between ATmega16/32 and ATmega164P/324P/644(P) (11 pages, revision C, updated 06/06)
This application note summarizes the differences between ATmega16/32 and ATmega164P/324P/644(P) and is a guide to assist current ATmega16/32 users in converting existing designs to the ATmega164P/324P/644(P).
 
 
AVR506: Migration from ATmega169 to ATmega169P (6 pages, revision B, updated 06/06)
The ATmega169P is designed to be pin and functionality compatible with ATmega169, and this application note summarizes the differences between them.
 
 
AVR507: Migration from ATmega329/649 to ATmega329P/649P (5 pages, revision A, updated 07/06)
The ATmega329P/649P is designed to be pin and functionality compatible with ATmega329/649, but because of improvements mentioned in this application note there may be a need for minor modifications in the application when migrating from ATmega329/649 to ATmega329P/649P.
 
 
AVR508: Migration from ATmega644 to ATmega644P (5 pages, revision A, updated 07/06)
The ATmega644P is designed to be pin and functionality compatible with ATmega644, but because of improvements mentioned in this application note there may be a need for minor modifications in the application when migrating from ATmega644 to ATmega644P.
 
 
AVR509: Migration between ATmega169P, ATmega329P and ATmega649P (4 pages, revision A, updated 07/06)
The ATmega169P, ATmega329P and ATmega649P are designed to be a pin and functionality compatible sub family, but because of the differences in memory sizes and other issues mentioned in this application note there may be a need for minor modifications in the application when porting code between the devices.
 
 
AVR510: Migration between ATmega329/649 and ATmega3290/6490 (3 pages, revision A, updated 07/06)
The ATmega3290/6490 are designed to be functionality compatible with ATmega329/649, but with 4x40 Segment LCD driver instead of 4x25 segments. Because of the extra pins needed for the LCD control they are not pin compatible, and there will be need for modifications when porting code between the devices. This migration note describes the necessary modifications.
 
 
AVR511: Migration from ATmega3290/6490 to ATmega3290P/6490P (5 pages, revision A, updated 07/06)
The ATmega3290P/6490P is designed to be pin and functionality compatible with ATmega3290/6490, but because of improvements mentioned in this application note there may be a need for minor modifications in the application when migrating from ATmega3290/6490 to ATmega3290P/6490P.
 
 
AVR512: Migration from ATmega48/88/168 to ATmega48P/88P/168P (5 pages, revision A, updated 07/06)
The ATmega48P/88P/168P is designed to be pin and functionality compatible with ATmega48/88/168, but because of improvements mentioned in this application note there may be a need for minor modifications in the application when migrating from ATmega48/88/168 to ATmega48P/88P/168P.
 
 
Migrating from T89C51CC01 & AT89C51CC03, to AT90CAN128, AT90CAN64, AT90CAN32 (7 pages, revision A, updated 06/05)
This application note is a guide, on the CAN controller, to help current T89C51CC01, AT89C51CC03 users convert existing designs to AT90CAN128, AT90CAN64, AT90CAN32.
Hosted by uCoz